

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

No code of conduct on this project

Please do not bother me with code of conducts….

There is only a single rule to consider:

	Don’t be a genital

Discord

 Flashing the U boot firmware to an older version when the hack is not working

Flashing the U boot firmware to an older version when the hack is not working

If you updated the camera to the latest firmware version using the mii home app,
the firmware does not allow booting from an SD card anymore, resulting in the hack not working.

How to flash the firmware

To revert this behaviour, you can flash the firmware of the camera
to an older u-boot version that still allows booting from SD.

To activate this firmware, use the tf_recovery.img file:

	Place the tf_recovery.img in the root of the SD card and remove any other files.

	Slide the SD card in the slot and power up the camera.

	Wait for 10 minutes till the blue led goes on.

	Unplug the camera’s power.

	If the flash is successful, the tf_recovery.img file is renamed to tf_recovery.img.bak.

If you are using a mac, add the SD card to your spotlight private excludes
in your settings to prevent the .Spotlight and .fseventsd directory to be created, which could block the reset.

 Getting Help

Getting Help

If you create an issue because “the hack is not working” or “the camera is not booting”, I will most of the time ask you to upload the log files of the camera to have a look what is up.

As it’s much easier and faster for me to debug a non-responsive camera using the logs, it’s recommended to always create a logs.tar.gz file containing the log files first, before you continue creating the issue.

In this wiki I’ll explain how to upload your log files in a secure and safe way.

!!! warning “Security considerations”
If things go very bad in the startup routine, it could happen that your WIFI password or root password leaks to the log files.
Before uploading your log files it is recommended to check if your logs contain secrets that should not be published.

Requirements

If an issue appears during startup, set PURGE_LOGFILES_AT_BOOT=0 in your config to ensure the files will not be truncated at startup.

Then power off the camera a few (3 or 4) times and leave the power on for at least 3 minutes after each boot before packing the logs together.

Create a tar container with all the logs on the camera itself.

If you have telnet or SSH access to the camera, you can tar the files together on the camera itself.

To do this, log in, and issue the following command:

cd /tmp/sd
tar cvzf logs.tgz log

You can retrieve the logs.tgz file using scp, rsync or sftp or by removing the SD card from the camera and inserting it in your computer.

Create the zip or tar container on your own computer

If no telnet or SSH is running, in most cases some log entries are written to logs anyway, so have a look if any files exist in the log/ directory on your SD card.

Pack the log/ using a zip utility or tar the file using your favorite tools and upload in issue :) 👍

Please use only zip or tar and gzip.

Creating the issue

As debugging is hard without any information, be very specific [https://www.chiark.greenend.org.uk/~sgtatham/bugs.html] about what is happening and what errors or behaviour you see.

I test all releases thouroghly on multiple camera’s so a camera that is not booting or remains nonresponsive camera is in most (like 99%) of the cases the result of a configuration error that you caused yourself.
I’ve mentioned some in the Troubleshooting guide, so if you haven’t read it, do this first.

Upload the log files if the issue is related to boot issues, otherwise a log file is not needed.

Feature requests

Although the camera is hard to create features for and as learning to work with the toolkit takes lots of time, creating new features is not always as easy as it sounds.

I have had plans to create ssl encryption for the rtspd and to add audio to the stream,
but as the libraries are undocumented and mostly precompiled, adding functionalities like this is very hard, not to say almost impossible.
I created a list with planned features that I think I can build om the future.

If you are interested in helping, feel free to create pull requests or ask for more information. I love to see some engagement on this project :)

Feel welcome to adopt some development of any the (listed or unlisted) functionalities if you feel like contributing to this funny little eggformed camera.

 How does this hack work

How does this hack work

This firmware extension uses the kernel and the userland that is build by the creators of the original firmware.

How does the hack work

By using a developer boot mode in that allows running scripts from the SD card at boot-time,
we manipulate the boot sequence of the camera.

This developer mode normally verifies the external software on the SD card to be signed with a GPG key from the developers.
By overwriting the verification script with our own, we ensure our software can be started as well.

As newer firmwares do not provide the “mode 4” developer mode anymore,
an older firmware is provided
to downgrade to a firmware that does support this boot mode.

Normally the software created by Xiaomi is started when the camera is powered on, but instead of the regular boot script,
we use our own scripts to ensure the Xiaomi cloud suite is not able to start.

After this is done, we start our boot sequence starting the web server, the rtspd and the dropbear SSH server.
After our own boot scripts, the rest of the boot sequence is continued as usual to ensure all required services
and configuration is done at boot time.

 License stuff

License stuff

License

If I somehow screwed up in licensing a script or tool that I’ve copied from your project, let me know, so I can add the requested changes. (I really suck at licensing, but I’d like to do it right)

Open Source

Sadly, not all software in this repository is open source: Although I try to use open source as much as possible,
the librtsp and gmlib software that is intensively used in the rtsp daemon, are part of
the grain media / faraday-tech toolchain and precompiled.

If you happen to know where to find the source code, please let me know :)

 Planned features

Planned features

The listed features are features I now think am able to build in the coming future.
I will not give any estimation and don’t pin me on this list as it will problably change over time as my time-schedule,
interest and skills change as well.

	Play audio using the internal speaker

	Record audio using the internal microphone

	Mount smb, ftp, sshfs or nfs mount to upload recorded media

	Compile iptables kernel modules as LKM and insert at boot time

	Enable SSL by default for lighttpd

	Show red dot in image using OSD module when motion is detected

	Stream a static image or repeat the last taken keyframe when condition N is met. (pause/privacy mode)

In progress

	Convert video file from JVT NAL sequence, H.264 video to something VLC can play.

	Implement update mechanism

 Screenshots

Screenshots

Here you can find some screenshots of the web interface.

The front page

[image: Image of Frontpage]

The snapshot page

[image: Image of Snapshot]

The settings page

[image: Image of Settings]

The system page

[image: Image of System]

The services page

[image: Image of Services]

The log viewer page

[image: Image of Log Viewer]

The config editor page

[image: Image of Config Editor]

The api documentation page

[image: Image of Api Docs]

 Security Considerations

Security Considerations

TLDR: DO NOT EVER PUBLICLY EXPOSE THIS WEBCAM TO THE INTERNETZ!

This is not a very secure webcam. Although it is semi-safe to use for home automation projects,
exposing it to the internet would backfire quickly and is considered
very badong [https://www.urbandictionary.com/define.php?term=badong].

The camera is running an old u-boot version, a kernel from the middle ages
and was never designed to be exposed to the internet.
The kernel has no iptables or any other traffic filtering mechanism build in,
so securing this ip camera from the big angry internet is not easily done without expensive hardware.

Use the camera with common sense: Use secure strong passwords,
use a private and secure wifi network, put it behind a firewall,
don’t show your junk in front of the camera and make sure you don’t place it in private spaces
that you don’t want others on your wifi network to see.

Generate an SSL certificate and implement it on the web server.
You can find out how to do this in the ssl instructions.

As the RTSP daemon is semi-secured with authentication, non-computer-skilled people in your network
might not be able to view the camera, but the guy in the hoodie leeching on your wifi and who knows
how to use a packet sniffer certainly can.

I use this camera’s on a private wifi dedicated to IOT devices.
It has no connection to the internet but NTP and ping and is not accessible from
my users wifi other than through zone minder.

This way i feel i’ve at least tried to prevent others from being able to access my cameras for evil.

Although the camera was originally designed as a baby monitor,
I would not recommend to use it that way without some additional security layers.
Not with the hack and not without it either.
Don’t look at me when your private sauna pictures (or worse) show up on the internet: I warned you ;)

Use the firmware only indoors and at your own risk.
Use a safe and certified power adapter to power the camera and make sure it doesnt get wet or moist.
Use common sense and don’t be evil!

 Troubleshooting

Troubleshooting

Did the installation not work out? To help you fix the most common issues,
I’ve created this article with some steps that can help you debug.

!!! note
Before you start debugging or reading any logs,
set ENABLE_LOGGING to 1 and PURGE_LOGFILES_AT_BOOT to 0 in config.cfg.
This enables logging so hopefully all related errors are written to a log file in /tmp/sd/log and keeps the log files over reboots.

General recommendations

Creating an issue

If you create an issue, most of the “it’s not working”, “the camera is not booting” or “nothing happens” related cases, I will ask you to pack your log files together and paste them in the issue.
Without these log files we cannot help you debug the issues you ran into.

Creating an issue

If you create an issue, most of the “it’s not working”, “the camera is not booting” or “nothing happens” related cases, I will ask you to pack your log files together and paste them in the issue.
Without these log files we cannot help you debug the issues you ran into.

To pack the log files together, I’ve created some instructions. You can find them in this article about packing your log files

Changing the root Password

Do not use characters in the ROOT_PASSWORD or other passwords that are not allowed in shell environments without escaping.
Be careful with using backticks, exclamation marks (!), dollar sign ($), semicolon (;), number sign (#) and double and single quotes in passwords and settings.

Allowed chars in the web interface config editor are:

a-z A-Z 0-9 (){}.@|+:[]><\/^%&_- .=

Editing your config.cfg

Use an editor that does not change the character encoding of the config.cfg to make your edits. If you see errors in your log files similar to:

Jan 1 00:00:21 wifi: Line 6: failed to parse psk '"^M"'.

/tmp/sd/config.cfg: line 6: ^M: not found

This happens if you have edited your config.cfg on windows computer with a non-text-based editor.

Use notepad++ or similar to work around this issue.

You can try to fix this using the fromdos utility:

/tmp/sd/firmware/bin/fromdos /tmp/sd/config.cfg

WIFI connection issues

Sometimes configuring the WIFI through the config.cfg results in a non-responsive or offline camera.
If you run into this behaviour, try configuring the WIFI through the MiiHome app, as the camera is using this state waiting for the app to send the credentials.

If the WIFI connection is not fully setup within a certain amount of time, the WIFI is switched to a state used by the MiiHome app to send the WIFI credentials.

This issue results in the following entries in the logging in /tmp/sd/log:

Jan 1 00:00:20 wifi: Enabling wifi STA mode
Jan 1 00:00:27 wifi: udhcpc (v1.19.4) started
Jan 1 00:00:27 wifi: Sending discover...
Jan 1 00:00:30 wifi: Sending discover...
Jan 1 00:00:30 wifi: Sending discover...
Jan 1 00:00:30 wifi: Sending discover...
And so on...

To work around this issue:

	Remove the SD card from the camera

	Connect the camera to power

	Wait till the STA mode is active and configure the camera’s WIFI connection using the MiiHome app.

	Power off the device

	Reinsert the SD card

	Power on again

After the WIFI is set up using the MiiHome, the credentials are stored in nvram and are not needed in the config.cfg anymore.

After you completed the configuration of the camera in the app, the credentials are saved and you don’t need to set the password in the config.cfg anymore and the camera should join the WIFI as expected.

The RTSP stream is colored blue

Try switching the IR Cut on or off. Most of the time this is not a bug but only the infra red filter being enabled causing the image to be a bit more blue then red.

The hack appears not to be working

If the hack is not working, try the procedures below to get the camera working:

Flash the u-boot firmware

If you haven’t flashed to an older u-boot using the tf_recovery.img, do this first.

After you have inserted the sd card with only the tf_recovery.img on it, start the camera and wait until the blue led starts blinking.

Install the firmware on the SD card

Because the repo itself does not contain the binaries that are required to run this hack, simply cloning the repository and copying the contents of the sdcard/ directory to
SD card, will not suffice. The binaries are build for every release using travis-ci [https://travis-ci.org/MiiCam/MiiCam/] and are not in the repo.

It is therefor recommended for new users to use the tarbal or zip files that are created with every release.
These releases are the only versions that are tested thoroughly.

You can download the latest on the releases page [https://github.com/MiiCam/MiiCam/releases].

After you’ve downloaded the tgz file, unpack the tarbal using the following command:

tar xvzf chuangmi-720p-hack.tgz

…And copy the contents of the sdcard/ directory to the root of your SD card.

Make sure you have installed all the files in the sdcard/ to the root of the SD card:

firmware/
ft_config.ini
manufacture.bin
config.cfg
ft/
tf_recovery.img.bak

The RTSP link when added to VLC player is asking for a login. What should I add?

The authentication on the RTSP service can be configured by setting the corresponding auth variables in config.cfg.

The RTSP credentials are by default set to:

Var	Value
—	—
RTSP_USER	stream
RTSP_PASS	bJ2xnahtCgninraelmI

Before using the rtsp make sure you change these credentials!

If you completely unset the variables or change one of both into an empty value (""),
the authentication is disabled.

What is the default password to login using SSH

The root user password is by default set to: Chuangmi720pCam123.

You should change the password in config.cfg.

Unstable camera / Sudden reboots

If the camera is constantly rebooting and or slow, keep in mind that this is a very small camera with a very small brain.

If you enable all functionality including (especially) the Xiaomi cloud suite,
the web server, the MQTT scripts and the RTSP server,
there is a big chance the camera gets very hot very often and suddenly reboots.

As it is not a computer,
I’m afraid you have to make a smaller selection of functionality you desire and disable the rest.

It is best to leave the cloud suite disabled at all times and only use the RTSP service instead.
You can use all the functionality of the hack at the same time
as long as you do not enable the cloud suite at the same time.

The RTSP stream is glitched and stuttering

See: “Unstable camera”.

(Disable the Xiaomi cloud functionality)

The cloud suite is disabled but the RTSP stream is still glitching

If you disabled the cloud suite in the configuration (which it is by default),
and you are still running into glitchy stream, it is possible there are too many viewers for the camera.
Use a RTSP proxy to lower the connections to the camera.

Another possibility is that the camera is still running the cloud suite due to an error in the boot routine.
If this is the case, look at the log files on your camera for errors and create an issue, so we can debug it together.

The camera is bricked

In most of the cases flashing the camera using the tf_recovery.img is enough to restore a bricked camera.

I deleted files on the camera and now it’s not booting anymore.

If you deleted files outside the SD card and the camera is not working functionally anymore,
I’m afraid there is not much you can do.

You can try using the tf_recovery.img file to restore the u-boot, but I have no idea if this will repair the damage.

The SD card is not detected.

I’ve heard about some issues when using newer SDHC cards. Try using an older SD card below 32GB.

The camera smells like burning plastic

Disconnect the power immediately (Stop reading and do it NOW!),
and keep a close eye on the plastic to ensure no flames or smoke are coming from the camera 🔥

If needed, drown the camera in a glass of water or a toilet to ensure any starting fire is gone and check the warranty.

Ask for a refund or buy a replacement as you are dealing with serious hardware failure. Do not reconnect the power!

Pictures of my mom that are taken with this camera are all over the internet

You didn’t read the security considerations didn’t you?

 Setting up the camera

Setting up the camera

Prerequisites

Before getting started with this hack, know that some basic linux knowledge and command line skills are required to use this hack.

Downloading the files

!!! warning “To use install the hack, always use the compiled version.”
Copying just the files in the repository to your sd card without building the binaries wil Not work.

As the large static binaries do not work well with git, the repository itself does not contain the compiled binaries.
The binaries will be build by travis and uploaded to github on every release.

For new users it is recommended to use the precompiled binaries that are created with every release.
You can download the release builds from the github releases page [https://github.com/MiiCam/MiiCam/releases].

Build the binaries

If you prefer to build the binaries yourself, have a look at the building documentation to find instructions on how to do it yourself.

Flash the U-boot version

If the firmware is too recent, the hack cannot always be activated.
To work around this issue, you can downgrade the firmware to a working version using the flash instructions

Prepare the SD card

Format a micro SD card in fat32 (vfat) format and copy the content of the sdcard/ folder in the root of your SD card.

Configure the Chuangmi camera on the SD card

When the camera is started for the first time, it is waiting for the MiiHome app to send the credentials.
Setup the camera with the MiiHome app, and wait till the camera is connected to the wifi.

To configure another wifi network to connect to, edit the file config.cfg.

Start the camera

	If plugged, unplug the camera

	Insert the SD card in the camera

	Power on the camera

If all is well, the camera will start.

The led will indicate the current status:

	yellow: camera startup

	blue blinking: network configuration in progress (connec to wifi, set up the IP address)

	blue: network configuration is OK. Camera is ready to use.

You can test is your camera is up and running this hack with your browser on url http://your-camera-ip/.

Using the camera

Using the web interface and over MQTT many settings and services can be enabled and disabled.

Have a look at the api docs in the web interface for a list of all available http calls you can use to control the camera.

For controlling the camera over MQTT, have a look at the MQTT documentation

Uninstall the hack

There are no files altered on the camera so simply remove the SD card to uninstall the hack.

 Accessing the camera

Accessing the camera

The camera can be accessed using SSH or Telnet. (When enabled)

I recommend using the SSH service, as this is more secure and easier to use when you have key authentication in use.

Configuration options for SSH

Configuration	Options	Description
—	—	—
ENABLE_SSHD	1 to enable, 0 to disable.	Enable or disable the dropbear SSH daemon
DROPBEAR_EXTRA_ARGS	A command line string	Set extra command line arguments to the SSH daemon

Using the SSH server

If enabled the SSH server is on port 22.

Enabling the dropbear SSH service

The dropbear SSH service can be enabled at boot time by setting ENABLE_SSHD to 1 in config.cfg.

After changing the setting, you can start the dropbear SSH service using the services page in the web interface or by issuing a start using the init script:

/etc/init/S99dropbear start

To stop the dropbear SSH service use:

/etc/init/S99dropbear stop

Using SSH key authentication

As the dropbear SSH service supports authorized key authentication,
you are encouraged to use SSH keys rather than password authentication.

You can add a .ssh directory containing an authorized_keys file to enable key authentication.

As /root is a tmpfs (a filesystem that only exists in memory),
it is deleted every time the camera is rebooted or shut-off and re-created every time at boot time.

To ensure your key is permanent after a reboot,
don’t just add your key to /root/.ssh/authorized_keys but add it in /tmp/sd/firmware/root/.ssh/authorized_keys.
This way the key will be copied to /root at boot time.

Creating an SSH keypair

For the best performance, use ECDSA keys rather dan RSA or DSA keys.

To create a key pair:

ssh-keygen -t ecdsa -f identity

After generating the key pair, you can add the content of identity.pub to your authorized_keys file.

Preserving the SSH host key

If you have to accept a new SSH host key fingerprint on each login after a reboot,
make sure the /etc/dropbear/dropbear_ecdsa_host_key is correctly copied
to /tmp/sd/firmware/etc/dropbear at SSH startup.

At start time, a new ssh host key is generated if nonexistent.
This creates a new fingerprint for the server, resulting in the same dialog over and over:

The authenticity of host 'camera (192.168.1.1)' can't be established.
ECDSA key fingerprint is SHA256:FINMZzDR+oDsXp5i5peVRoMB7vV1KOUJm8ExS3aV7u8.
Are you sure you want to continue connecting (yes/no)?

If this dialog keeps appearing after a reboot,
the generated host key is not correctly copied to your sd card and restored after a reboot.
Check your tf_boot.loglog file to find the culprit.

Disabling password authentication

Disabling password authentication for root
or for all users can be accomplished by changing the command line arguments for the dropbear SSH service.

This can be done using the DROPBEAR_EXTRA_ARGS variable,
which is appended to the command line arguments in the init script of the SSH daemon.

To disable password authentication, the -s flag is available.
Have a look in the manpage [https://www.systutorials.com/docs/linux/man/8-dropbear/] or
the website of the dropbear daemon [https://matt.ucc.asn.au/dropbear/dropbear.html]
to see which options are available for your convenience.

Using the Telnet server

The telnet protocol is unencrypted and therefore insecure.
Only use it when needed, but disable the service after usage and stick to SSH for general access of the camera

If the telnet service is enabled it is listening on port 23.

Configuration options for Telnet

Configuration	Options	Description
—	—	—
ENABLE_TELNETD	1 to enable, 0 to disable.	Enable or disable the telnet daemon

Authentication issues

If boot issues appear due to syntax errors in scripts, the root password is often not set, resulting in an unauthenticated telnet service. Check your logs to find the culprit.

Enabling the telnet service

The telnet service can be enabled at boot time by setting ENABLE_TELNETD to 1 in config.cfg.

After changing the setting, you can start the telnet service using the services page in the web interface or by issuing a start using the init script:

/etc/init/S99telnet start

To stop the telnet service use:

/etc/init/S99telnet stop

 Camera Options

Camera Options

Ceiling Mode

Ceiling mode is introduced to set the correct rotation to camera’s that are mounted on the ceiling.
If CEILING_MODE is enabled, the camera will use flip and mirror_mode to rotate the camera accordingly.

Ceiling mode can be configured in the main config.cfg by setting CEILING_MODE from 0 to 1.

Night mode

Night mode (B/W mode) filters all the color out.

Mirror mode

Mirror mode flips the image vertically.

Flip mode

Flip mode does what it says: It horizontally flips the image bottom up.

IR Cut

Does image correction by filtering out infrared light.
This improves the image quality when you have lots of additional red light.

Other modes

Several auto correction modes are available in the web interface:

	Auto Exposure

	Auto Focus

	Auto White Balance

	Auto Sharpen

	Black Level Correction

	Contrast Enhancement

	Gamma Curve Correction

	Noise Reduction

 Configuration file options

Configuration file options

There are many options in the configuration file. As not all have their own documentation page,
this page contains a list of some options, a description and sometimes links to other documentation pages.

Manage Xiaomi functionality

Configuration	Options	Description
—	—	—
DISABLE_HACK	1 to enable, 0 to disable.	Disable the custom firmware and boot the chinese firmware.
DISABLE_CLOUD	1 to enable, 0 to disable.	Disable all xiaomi functionality including the cloud streaming, audio, record on motion detection and firmware updates.
DISABLE_OTA	1 to enable, 0 to disable.	Allow cloud functionality like record on motion detection and usage of the Mii Home App, but disable firmware updates of the official firmware.

System Settings

| Configuration | Options | Description |
| — | — | — |
| HOSTNAME | The hostname string | The hostname of the camera
| ROOT_PASSWORD | The root password string | The root pass (used for SSH, telnet, samba and http)

Wifi Settings

Configuration	Options	Description
—	—	—
WIFI_PASS	The wifi password string	The WIFI Password. Will be saved in nvram, so can be cleared for privacy purposes.
WIFI_SSID	The wifi SSID string	The WIFI SSID. Will be saved in nvram at boot, so can be cleared after first boot.

Services

Configuration	Options	Description
—	—	—
AUTO_NIGHT_MODE	1 to enable, 0 to disable.	Enable or disable the automatic night mode daemon

Camera Options

Configuration	Options	Description
—	—	—
CEILING_MODE	1 to enable, 0 to disable.	Enable ceiling rotation

See more info the camera options page

 Configuring FTP

Configuring FTP

If enabled the FTP server is listening on port 21.

As there is no login/password required, make sure you disable the FTP service after usage.

Configuration Options

Configuration	Options	Description
—	—	—
ENABLE_FTPD	1 to enable, 0 to disable.	Enable or disable the FTP service (no auth)
FTP_ROOT	A directory path	Set the content root of the ftp service
FTP_EXTRA_ARGS	A command line string	Set extra commandline arguments to the ftpd

Enabling the FTP service

You can start the FTP service by setting ENABLE_FTPD=1 in config.cfg
followed by starting he FTP service using the service page in the web interface,
or by starting it on the command line using the init script:

/etc/init/S99ftpd start

Stopping the FTP service

Using the same init script, you can stop the FTP service:

/etc/init/S99ftpd stop

If you want to disable the FTP service at boot time, make sure ENABLE_FTPD is set to 0.

Setting the content root of the ftp service

By changing the FTP_ROOT variable in config.cfg, you can change the root directory of the FTP service.

This is useful to prevent access to all files on the filesystem and especially when using write access.

Don’t set FTP_ROOT=/ as this gives full (readonly) access to all files on the camera.

Allow file upload over FTP

By default, the ftp service is configured READONLY.
This is a security measure to prevent unauthorized changes of files on the filesystem
as there is no authentication mechanism available for the ftp service.

If you want to upload files to the camera, add the -w flag to the FTP_EXTRA_ARGS variable in config.cfg
and restart the FTP service.

Make sure you set the FTP_ROOT to the directory in which you want to change the files.

NEVER combine -w and FTP_ROOT=/, as this gives full unauthenticated write access to all files on the camera!

 Configuring MQTT

Configuring MQTT

When enabled in config.cfg, it is possible to control many features of the hack over MQTT.

The camera sends an update every few seconds, reporting its status.
By pushing commands to $MQTT_TOPIC/set, many values can be changed.

Services

There are 2 scripts that enable MQTT control. Both use the config.cfg for configuration.

These scripts are:

	mqtt-control.sh - Used for managing incoming MQTT messages

	mqtt-interval.sh - Used for sending a status update every N seconds

Both scripts can be started from the web interface or by using its init script:

/tmp/sd/firmware/etc/init/S99mqtt-interval
/tmp/sd/firmware/etc/init/S99mqtt-control

If ENABLE_MQTT is set to 1 in config.cfg, both services will be started at boot time.

Known issues

You should not use MQTT topics that contain whitespaces in the topic string.
The MQTT scripts can’t handle a topic with a space or tab in it.

Configuration options

Configuration	Options	Description
—	—	—
ENABLE_MQTT	1 to enable, 0 to disable.	Enable the MQTT Functionality.
MQTT_USER	The username string	The username for connecting to the MQTT server
MQTT_PASS	The password string	The password for connecting to the MQTT server
MQTT_HOST	The hostname string	The hostname or ip address of the MQTT server
MQTT_PORT	The server port int	The port of the MQTT server
MQTT_TOPIC	The base mqtt topic string	The base MQTT topic to subscribe to
MOSQUITTOOPTS	Option string	The additional options string for mosquitto-sub
MOSQUITTOPUBOPTS	Option string	The additional options string for mosquitto-pub
MQTT_STATUSINTERVAL	Wait time in seconds	The wait time between MQTT status updates

Config example

The configuration section for MQTT in config.cfg:

##
MQTT Settings
##

Enable or disable MQTT service
ENABLE_MQTT=0

Connection options for broker server
MQTT_USER=mqtt-user
MQTT_PASS=mqtt-password
MQTT_HOST=mqtt-host
MQTT_PORT=1883

Define the base topic used by the camera
MQTT_TOPIC="home/$HOSTNAME"

Define additional options for Mosquitto here.
For example --cafile /tmp/sd/firmware/etc/cacert.pem --tls-version tlsv1
MOSQUITTOOPTS=""

Add options for mosquitto_pub like -r for retaining messages
MOSQUITTOPUBOPTS="-r "

Send a mqtt statusupdate every n seconds
MQTT_STATUSINTERVAL=30

Interval

Depending on MQTT_STATUSINTERVAL in config.cfg,
the mqtt-interval service will send a value to the following channels:

Led topics
${MQTT_TOPIC}/leds/blue
${MQTT_TOPIC}/leds/yellow
${MQTT_TOPIC}/leds/ir

Sensor topics
${MQTT_TOPIC}/ir_cut
${MQTT_TOPIC}/night_mode
${MQTT_TOPIC}/flip
${MQTT_TOPIC}/mirror

Image topics
${MQTT_TOPIC}/brightness
${MQTT_TOPIC}/contrast
${MQTT_TOPIC}/hue
${MQTT_TOPIC}/saturation
${MQTT_TOPIC}/sharpness
${MQTT_TOPIC}/denoise

System topics
${MQTT_TOPIC}/rtsp
${MQTT_TOPIC}/system

If the MQTT_STATUSINTERVAL is set below 30 seconds,
it will be reset to 30, to prevent the script from running too often.

Control MQTT

By sending a command to a preconfigured MQTT topic, you can control several options of the camera.
At boot time the mqtt-control service is starting which listens on the following topics:

Led control
${MQTT_TOPIC}/leds/blue/set on
${MQTT_TOPIC}/leds/blue/set off
${MQTT_TOPIC}/leds/blue
${MQTT_TOPIC}/leds/yellow/set on
${MQTT_TOPIC}/leds/yellow/set off
${MQTT_TOPIC}/leds/yellow
${MQTT_TOPIC}/leds/ir/set on
${MQTT_TOPIC}/leds/ir/set off
${MQTT_TOPIC}/leds/ir

Camera control
${MQTT_TOPIC}/ir_cut/set on
${MQTT_TOPIC}/ir_cut/set off
${MQTT_TOPIC}/ir_cut
${MQTT_TOPIC}/brightness/set *
${MQTT_TOPIC}/brightness
${MQTT_TOPIC}/contrast/set *
${MQTT_TOPIC}/contrast
${MQTT_TOPIC}/hue/set *
${MQTT_TOPIC}/hue
${MQTT_TOPIC}/saturation/set *
${MQTT_TOPIC}/saturation
${MQTT_TOPIC}/denoise/set *
${MQTT_TOPIC}/denoise
${MQTT_TOPIC}/sharpness/set *
${MQTT_TOPIC}/sharpness

System settings
${MQTT_TOPIC}/rtsp/set on
${MQTT_TOPIC}/rtsp/set off
${MQTT_TOPIC}/rtsp
${MQTT_TOPIC}/system

Night mode
${MQTT_TOPIC}/night_mode/set on
${MQTT_TOPIC}/night_mode/set off
${MQTT_TOPIC}/night_mode
${MQTT_TOPIC}/night_mode/auto/set on
${MQTT_TOPIC}/night_mode/auto/set off
${MQTT_TOPIC}/night_mode/auto

Troubleshooting MQTT

As there are many moving parts when controlling the camera with MQTT, debugging issues can be daunting.
To get you going, I’ve created a list with things to rule out when solving issues with MQTT.

Assuming you have editted your configuration file and configured the correct settings… (IE you’re not a complete idiot)

Check if your credentials are correct

If you need authentication (which I recommend), make sure you use the correct credentials and test if you
are allowed to send messages to the topic you want to use.

Check in the log of the MQTT server for incoming connections

If the camera can connect to the MQTT server to send it’s status updates, you should see the loglines of those incoming connections
in the mosquitto logfile (usually in /var/log/mosquitto/mosquitto.log).

As each message is send with a new connection, it can be noisy in the logs of connections and disconnections of the camera.

Check if you can access the MQTT server from the camera

Make sure the credentials you are using are correctly set in the config.cfg, check if the port is correct and
if you have access from the camera to the server using telnet:

source /tmp/sd/config.cfg
telnet $MQTT_HOST $MQTT_PORT

Send a message from the command line

To test where the error appears, use the same function the MQTT utils use to send messages by sourcing the functions.sh file:

source /tmp/sd/firmware/scripts/functions.sh

mqtt_send "$TOPIC" "some test message"

Connect to a topic and publish to it

Open 2 terminals to the camera, and use one to listen to a topic:

source /tmp/sd/firmware/scripts/functions.sh

mqtt_subscribe "$CAMERA_HOSTNAME/test" "testing_miicam"

Now open a second terminal and send a message to the same topic as read ealier:

source /tmp/sd/firmware/scripts/functions.sh

mqtt_send "$CAMERA_HOSTNAME/test" "some test message"

Now check in the first terminal if the message arrived by the listening client.

 Configuring RTSP

Configuring RTSP

The RTSP daemon can be used to create a local video stream instead of using the cloud functionality.

The RTSP daemon is required for using the snapshot and recording functions in the web interface.

Enabling the RTSP daemon

WARNING: The RTSP daemon has authentication but without encryption!
Read the Security Considerations for more information

By default, the rtspd is enabled. You can disable it by setting ENABLE_RTSP to 0 and stop the rtspd service
on the commandline by executing the init script, or through the services page in the web interface.

If enabled the RTSP server is listening on port 554.

You can connect to live video stream (currently only supports 720p) on:

rtsp://your-camera-ip/live/ch00_0

For stability reasons disable cloud services while using RTSP.

Manually starting, stopping and requesting the status of the RTSP service

Using the init script, you can easily start and stop the rtsp daemon:

Start
/etc/init/S99rtsp start

Stop
/etc/init/S99rtsp stop

Restart
/etc/init/S99rtsp restart

Retrieve the status
/etc/init/S99rtsp status

Authentication

Since v0.959 the rtsp stream uses authentication to keep unwanted viewers from watching you in your underpants.

Set the RTSP_USER and RTSP_PASS to something you can remember.

To completely disable the authentication, set the variables to RTSP_PASS= and RTSP_USER= (to an empty string).

Changing settings of the RTSP stream

You can change several settings of the RTSP daemon within the limits of the camera.

If you want to change the frame-rate (FPS) settings,
test for the best possible results as not all settings changes work out well.
You can change the frame-rate to above 15fps, but effectively it will not go much higher than 20 frames per second.

The camera is very picky about some settings.
If the camera stream seems glitchy or the camera is periodically rebooting,
change the RTSP settings in config.cfg back to its default.

Recommended settings

During tests the quality and overall performance of the camera was at best using a variable bitrate,
as the camera can skip some frames when it’s under stress.

Using the GM_EVBR mode or GM_VBR does not seem to make much difference but try for yourself
if you experience issues with the settings you are using.

The recommended settings for best performance and quality are:

Encoding	Bitrate Mode	(Max) Bitrate	FPS	Width	Height
—-	—-	—-	—-	—-	—-
H264	GM_EVBR (4)	8192	15	1280	720
MPEG4	GM_EVBR (4)	2048	10	1280	720
MJPEG	GM_CBR (1)	4096	15	1280	720

When there is low light and the camera has lots of data to process, for example when the images are rapidly changing,
using a bitrate that is too high for the camera can result in a crashing or glitchy rtsp stream.
If this happens, try lowering the max bitrate (IE: from 8092 to 4096 or lower).

Since v0.961 the rtspd service allows setting a higher frame-rate than 15 fps.
This increases power usage and may cause instability of the camera.

Available Bitrate Modes

The available bitrate modes are:

| Bitrate Mode | Bitrate Mode Variable | Description
| —- | —- | —-
| 1 | GM_CBR | Constant Bitrate [https://en.wikipedia.org/wiki/Constant_bitrate].
| 2 | GM_VBR | Variable Bitrate [https://en.wikipedia.org/wiki/Variable_bitrate].
| 3 | GM_ECBR | Enhanced Constant Bitrate.
| 4 | GM_EVBR | Enhanced Variable Bitrate.

Encoder type option of the rtspd binary.

The RTSP service supports multiple encoder types.
These settings are accepted as command line arguments of the rtspd binary.

As H264 gives the best results in performance and image quality, this is the recommended and default encoding used.
You can use Mjpeg and mpeg4 as well, by adding the command flag to the RTSP_EXTRA_ARGS variable in config.cfg.

Changing the encoder type

To switch to another encoding, you can add the command flag to the RTSP_EXTRA_ARGS.
This adds the flag to the commandline arguments that are used to start the daemon.

The default startup options are:

DAEMON_OPTS=" -f$RTSP_FRAMERATE -w$RTSP_WIDTH -h$RTSP_HEIGHT -b$RTSP_BITRATE -m$RTSP_BITRATE_MODE $RTSP_EXTRA_ARGS"

If you want to use MJPEG, the additional command line option you need to add to RTSP_EXTRA_ARGS is the -j flag,
if you want to use MPEG4 the required flag is -4.
To use H264 encoding, no additional edits are needed as this is the default option.

For example, to configure MJPEG encoding, change the RTSP_EXTRA_ARGS variable in config.cfg to:

RTSP_EXTRA_ARGS=" -j"

Now save your changes and restart the RTSP service as described ealier in this article.

Testing your changes

There are 2 test we can do to verify whether our changes are effective:
Check the command line arguments of the RTSP service and second: use ffmpeg to verify which encoding is used.

First we’ll check the command line arguments:

ps -ef | grep rtsp

This should result the process of the RTSP service and the commandline arguments used:

 519 root 274:52 /tmp/sd/firmware/bin/rtspd -f15 -w1280 -h720 -b8091 -m1 -j

Now verify if the correct encoding is used by retrieving the stream with ffprobe:

ffprobe rtsp://localhost:554/live/ch00_0
ffprobe version 4.0.2 Copyright (c) 2007-2018 the FFmpeg developers
 built with gcc 4.4.0 (Buildroot 2012.02) 20100318 (experimental)
 configuration: --pkg-config-flags=--static --extra-cflags=-I/build/prefix/include --extra-cxxflags=-I/build/prefix --extra-ldflags=-L/build/prefix/lib --arch=arm --target-os=linux --cross-prefix=arm-unknown-linux-uclibcgnueabi- --prefix=/build/prefix --disable-shared --disable-ffplay --disable-doc --disable-w32threads --enable-avcodec --enable-avformat --enable-avfilter --enable-swresample --enable-swscale --enable-ffmpeg --enable-filters --enable-gpl --enable-iconv --enable-libx264 --enable-nonfree --enable-pthreads --enable-runtime-cpudetect --enable-small --enable-static --enable-version3 --enable-zlib
 libavutil 56. 14.100 / 56. 14.100
 libavcodec 58. 18.100 / 58. 18.100
 libavformat 58. 12.100 / 58. 12.100
 libavdevice 58. 3.100 / 58. 3.100
 libavfilter 7. 16.100 / 7. 16.100
 libswscale 5. 1.100 / 5. 1.100
 libswresample 3. 1.100 / 3. 1.100
 libpostproc 55. 1.100 / 55. 1.100
Input #0, rtsp, from 'rtsp://localhost:554/live/ch00_0':
 Metadata:
 title : RTSP Server Live
 comment : ICL Streaming Media
 Duration: N/A, start: 0.000000, bitrate: N/A
 Stream #0:0: Video: h264, yuv420p(progressive), 1280x720, 15.08 tbr, 90k tbn, 180k tbc

In the metadata you can see the h264 encoding is being used:

Stream #0:0: Video: h264, yuv420p(progressive), 1280x720, 15.08 tbr, 90k tbn, 180k tbc

Motion detection

The rtspd has motion detection functionality. To enable it,
have a look at the docs about motion detection

Recording and snapshots

You can create snapshot images and record video using the RTSP software.
This can be both on command and when motion is detected.

To create a snapshot from the command line use the take_snapshot utility.
To start a recording of 30 seconds, use take_video.

Configuration options

RTSP Settings

The options for the RTSP service are:

Configuration	Options	Description
—	—	—
ENABLE_RTSP	1 to enable, 0 to disable.	Enable or disable the rtspd service
RTSP_USER	The username string to connect	Set to enable password authentication
RTSP_PASS	The password string to connect	Set to enable password authentication
RTSP_WIDTH	An integer below 1280	Set the image width of the rtsp stream
RTSP_HEIGHT	An integer below 720	Set the image height of the rtsp stream
RTSP_FRAMERATE	An integer below 15	Set the max fps of the rtsp stream
RTSP_BITRATE	An integer below 8192	Set the max bitrate of the rtsp stream
RTSP_BITRATE_MODE	An integer between 0 and 4	Set the bitrate mode of the rtsp stream
RTSP_EXTRA_ARGS	A command line string	Set extra commandline arguments to the rtspd

Configuration example

Start local streaming server at system boot (0/1)
ENABLE_RTSP=1

The username to connect to the rtsp stream
RTSP_USER="stream"

The password to connect to the rtsp stream
RTSP_PASS="bJ2xnahtCgninraelmI"

The image width of the RTSP stream
RTSP_WIDTH=1280

The image height of the RTSP stream
Downscaling is possible
RTSP_HEIGHT=720

Set the max framerate of the RTSP daemon.
A framerate of 15 fps is the max supported by the camera
RTSP_FRAMERATE=15

The max bitrate
RTSP_BITRATE=8192
RTSP_BITRATE_MODE=4

Extra command line arguments for the RTSP daemon
RTSP_EXTRA_ARGS=""

 Configuring Restart Daemon

Configuring Restart Daemon

Restartd is a daemon for checking running and not running processes.
It reads the /proc directory every n seconds and does a POSIX regexp on the process names.
You can execute a script or a program if the process is or is not running.

By default, if enabled the ntpd and the dropbear SSH daemon are both guarded using restartd.
You can enable the restartd service by settings ENABLE_RESTARTD to 1.

You can add your own services to restartd to automatically restart the services when they are killed due to out-of-memory issues or when something flaky is going on.

Configuration options

Configuration	Options	Description
—	—	—
ENABLE_RESTARTD	1 to enable, 0 to disable.	Start or Stop restartd at boot time

Restartd Config

To add your services, add a configuration line to the /etc/restartd.conf.

Use the following format:

<process_name> <regexp> <action_if_not_running> <action_if_running>

process_name: the name of the process which is just for logging
as it does not affect for the regexp
#
regexp: the POSIX regular expression for the command line of the
process
#
action_if_not_running: a script or program name to execute if the
regexp does not match the full process command line
#
action_if_running: a script or program name to execute if the regexp
matches the full process command line

For example:

dropbear "/tmp/sd/firmware/bin/dropbear" "/tmp/sd/firmware/etc/init/S99dropbear restart" "/bin/echo '*** Dropbear SSH was restarted from restartd... '"
ntpd "/usr/sbin/ntpd" "/tmp/sd/firmware/etc/init/S51ntpd restart" "/bin/echo '*** NTPd was restarted from restartd... '"

 Configuring the HTTP Service

Configuring the HTTP Service

There aren’t many options to configure on the webserver as it is enabled by default.

It is recommended to enable SSL on the webserver.

Restricting access

You can add a configuration snippet allow or deny access to the webserver.

To do this, open /tmp/sd/firmware/etc/lighttpd.conf and add the following section:

Limit access to the web to these ip's
$HTTP["remoteip"] !~ "^192\.168\.|^172\.1\.|10\." {
 url.access-deny = ("")
}

Configuration options

Configuration	Options	Description
—	—	—
ENABLE_HTTPD	1 to enable, 0 to disable.	Enable or disable the lighttpd webserver
HTTP_API_USER	The username string	The username of the http only user
HTTP_API_PASS	The password string	The password of the http only user

configure SSL

Using encrypted connections on the web server is possible but as for now not default enabled.

To generate an SSL certificate and configure SSL on the camera,
follow this instruction.

 Configuring the shell environment

Configuring the shell environment

There are 2 shells on board that you can use for configuration and exploring the camera: bash and ash (busybox sh)

Using bash

To use bash, you can use the admin user to login. This user has the bash shell configured to be run at login.
If you logged in as root, you can use the bash shell by calling it’s executable.

(It’s full path is /tmp/sd/firmware/bin/bash instead of of the common used /bin/bash).

The bash shell has no buildins enabled as this didn’t work well with the cross-compilation. You are using the busybox shell tools.

Using Ash (busybox sh)

The default shell environment is a very limited Almquist shell [https://en.wikipedia.org/wiki/Almquist_shell] or ash shell,
provided by busybox [https://busybox.net] on the readonly filesystem.

For more information have a look at: https://linux.die.net/man/1/ash or look for the dash shell,
as both are very similar.

You can create aliases and functions and many features that most shell’s offer.

Creating aliases and adding settings to the shell environment

You can add aliases and settings to the shell environment by editing the .profile and the .busybox_aliases file.

As the /root partition is created at boot-time by mounting a tmpfs and copying all files from the sd card,
all changes in /root/.profile and /root/.busybox_aliases will be gone after a reboot.

This can be useful for testing purposes, but to make settings permanent,
you should add your settings in the source root files in /tmp/sd/firmware/root

Using bash as the default login shell

It is not recommended to use the bash shell as the default shell for root. If something goes wrong during boot and the SD card is not available, it becomes very hard to debug the issue as the shell configured in /etc/passwd is not available.

The bash shell is on the SD card so the root user uses the default /bin/sh shell to guarantee a working shell when the sd card is not able to mount.

The admin user has exactly the same uid and gid as the root user, but uses the bash shell as login. Use this user if you want to use bash, or change the shell after logging in.

 Configuring your terminal profile

Configuring your terminal profile

If you experience issues when using command line tools that use ncurses,
for example nano complaining about the terminal profile not being set, or a more generic error like:

nano error: Error opening terminal: xterm-256color

Your terminal is not configured accurately.

Terminal profiles

This error is caused because the camera has only a limited set of terminal profiles available.

These profiles configure settings like terminal size, the presence of color and the usage of special characters,
and can be found on the readonly filesystem of the camera in /usr/share/terminfo

You can configure a terminal profile manually by exporting the TERM variable,
or by adding them to your shell configuration file:

Available terminal profiles

The current available profiles are:

ansi
linux
screen
vt100
vt102
vt200
vt220
xterm
xterm-color
xterm-xfree86

Manually configure a terminal profile

Manually configuring only works for the current SSH session, when you logout the settings are gone.

To do this, issue the following command:

export TERM="xterm-color"

Permanent configuration

To make the terminal profile settings permanent, add the settings to your shell configuration in .profile:

echo 'export TERM="xterm-color"' >> /tmp/sd/firmware/root/.profile
echo 'export TERM="xterm-color"' >> /root/.profile

Now close your ssh connection and reconnect.
You can check whether the settings is correctly set, by issuing:

env | grep TERM

 Creating an SSL Certificate for use on this camera

Creating an SSL Certificate for use on this camera

Using SSL actually is possible and can be enabled on the webserver.

As it is not recommended to use this camera over the internet,
using Letsencrypt on this camera is not (easily) possible.
You can order an expensive ssl certificate from an SSL provider, but this is useless for internal use.

The easiest method to acquire an ssl certificate for the ip camera is to generate a
self-signed certificate to securely access the cameras web interface using openssl.

As it took me 4 hours to generate the required dhparams and the certificate files using the camera itself,
doing so is not a very nice option for the impatient (like me).
It is better and a lot faster to do this on a computer or laptop ;)

To implement SSL, some manual configuration is (still) required and you need
the openssl utility and libraries installed on your computer.

Automagically generate the required certificates

If you have git and docker installed, you can use the gencert functionality in the manage.sh script in this repository.
It executes all the required openssl magic in the correct order and copies the files in the right directory.

To do this, clone the repo and run:

./manage.sh --build-docker
./manage.sh --gencert

This starts a docker container and runs all the required commands.

The certificate files will be stored in sdcard/firmware/etc/ssl

Manually generate an SSL certificate.

To create a ssl certificate chain that can be used on the camera, use the following steps.

Prerequisites

Lets export some settings and create some directories that are required first:

cd <GIT REPOSITORY>
export SSLDIR="sdcard/firmware/etc/ssl"
mkdir -p $SSLDIR

Next, create a configuration file we need for setting up ssl:

cat > "$SSLDIR/v3.ext" <<EOF
authorityKeyIdentifier=keyid,issuer
basicConstraints=CA:FALSE
keyUsage = digitalSignature, nonRepudiation, keyEncipherment, dataEncipherment
subjectAltName = @alt_names
[alt_names]
DNS.1 = camera.name
DNS.2 = camera.local
DNS.3 = camera.home
Add your own aliases here
EOF

Use the hostname and or other varieties you use to reach the camera over the web for DNS.*

Generate root (CA) key and cert

To create a root key and cert, use the following commands:

openssl genrsa -out "$SSLDIR/rootCA.key" 2048

openssl req \
 -x509 \
 -new \
 -nodes \
 -key "$SSLDIR/rootCA.key" \
 -sha256 \
 -days 1024 \
 -out "$SSLDIR/rootCA.pem"

Create a private key, CSR and cert for the webserver

Next, Create a CSR and a key at once:

openssl req \
 -new \
 -nodes \
 -out "$SSLDIR/server.csr" \
 -newkey rsa:2048 \
 -keyout "$SSLDIR/server.key"

And after that the certificate:

openssl x509 \
 -req \
 -in "$SSLDIR/server.csr" \
 -CA "$SSLDIR/rootCA.pem" \
 -CAkey "$SSLDIR/rootCA.key" \
 -CAcreateserial \
 -out "$SSLDIR/server.crt" \
 -days 500 \
 -sha256 \
 -extfile "$SSLDIR/v3.ext"

Generate a dhparams file

If all went well, it’s time to generate a dhparams file.
This can take some time, and as it took 4 hours on the camera itself to generate one,
it is recommended to generate it on a regular computer or laptop.

Create one using the command:

openssl dhparam \
 -out "$SSLDIR/dh2048.pem" \
 -outform PEM -2 2048

Combine the key and cert into a single pem file

If the dhparam file is finally generated,
all that’s left to do is combine the generated ssl cert and key file in a single pem file.

This can be done by concatting both files to a new file:

cat "$SSLDIR/server.key" "$SSLDIR/server.crt" > "$SSLDIR/server.pem"

Configure the web server to use SSL

When the certificates are generated it’s time to configure lighttpd to use SSL.
For now this is a manual process, so buckle up, it’s going to be a bumpy ride :)

First, login on the camera by opening a SSH connection to the camera.
When you are on the camera (or the SD card is still connected to your computer),
open the lighttpd configuration file:

vim /tmp/sd/firmware/etc/lighttpd.conf

In the list if server.modules, add the mod_openssl module:

server.modules = (
 "mod_openssl",
 ...
)

Now in the first line of the configuration file, change the port from 80 to 443:

#server.port = 80
server.port = 443

Now, right under the server.port setting, add the following content block:

ssl.engine = "enable"
ssl.pemfile = "/tmp/sd/firmware/etc/ssl/server.pem"
ssl.ca-file = "/tmp/sd/firmware/etc/ssl/rootCA.pem"

ssl.dh-file = "/tmp/sd/firmware/etc/ssl/dh2048.pem"
ssl.ec-curve = "secp384r1"

This should suffice to configure an encrypted connection,
but if you want to make it secure, look up the latest safe ssl configuration
requirements on cipherli.st [https://cipherli.st/]

At the time I wrote this, this was:

ssl.honor-cipher-order = "enable"
ssl.cipher-list = "EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH"
ssl.use-compression = "disable"
setenv.add-response-header = (
 "Strict-Transport-Security" => "max-age=63072000; includeSubDomains; preload",
 "X-Frame-Options" => "DENY",
 "X-Content-Type-Options" => "nosniff"
)
ssl.use-sslv2 = "disable"
ssl.use-sslv3 = "disable"

Now copy the configuration file to etc and restart the webserver:

cp /tmp/sd/firmware/etc/lighttpd.conf /etc/lighttpd.conf
/etc/init/S99lighttpd restart

Trusting the self-signed SSL certificate.

If you used the instructions in this documentation page or used the manage.sh utility to create the certs,
you have a root certificate and a certificate for the lighttpd web server (server.pem).

By importing the root certificate in your SSL keychain you can prevent annoying browser warnings.

 Integrating the cam in your home automation

Integrating the cam in your home automation

As I only use one home automation suite myself (home automation),
I can’t test all the instructions to integrate the camera in your home setup of choice.
Please let me know if the instructions are not up to date anymore.

If you use a setup that is not listed here,
please document your configuration steps so I can add it to this article.

Using Home assistant

To view the camera in your home assistant setup,
use the ffmpeg component [https://www.home-assistant.io/components/camera.ffmpeg/]:

- platform: ffmpeg
 name: Chuangmi
 input: -rtsp_transport tcp -i rtsp://camera:554/live/ch00_0

How to control your camera in home assistant is a bit up to you as you should decide for yourself
which functionality you want to make controllable through home automation.

For example, you can choose to create buttons to enable and disable the leds
or the rtspd service using mqtt switches [https://www.home-assistant.io/components/switch.mqtt/]:

switch:
 # Change blue led
 - platform: mqtt
 name: "Camera1 Blue Led"
 icon: "mdi:led-on"
 state_topic: "home/camera1/leds/blue"
 command_topic: "home/camera1/leds/blue/set"
 payload_on: "on"
 payload_off: "off"

 # Change rtsp service on/off
 - platform: mqtt
 name: "Camera1 MJPEG RTSP Server"
 icon: "mdi:cctv"
 state_topic: "home/camera1/rtsp"
 command_topic: "home/camera1/rtsp/set"
 payload_on: "on"
 payload_off: "off"

(Untested but mostly copied from my own hass)

… Or create sensors [https://www.home-assistant.io/components/sensor.mqtt/]
or binary sensors [https://www.home-assistant.io/components/binary_sensor.mqtt/] for topics/outputs
that are not controllable but only send status updates…
(binary_sensor if the output is 1/0 (on/off) and sensors for anything else):

sensor:
 - platform: mqtt
 name: Camera1 Light Sensor
 state_topic: "home/camera1/brightness"
 unit_of_measurement: "%"
 icon: "mdi:brightness"

The output of system_status is:

{"uptime":" 20:52:54 up 4:06, 1 users, load average: 21.25, 21.24, 21.23","ssid":"gnoffel","bitrate":"72.2 Mb/s","signal_level":"-57","link_quality":"87%","noise_level":"0"}

Using templates you can split each part to it’s own sensor:

sensor:
 - platform: mqtt
 name: Camera1 Noise Level
 state_topic: "home/camera1/system"
 unit_of_measurement: "%"
 value_template: '{{ value_json.noise_level.replace("%", "") | int }}'

Or track the system load:

 - platform: mqtt
 name: Camera1 Load 1min
 state_topic: "home/camera1/system"
 unit_of_measurement: ''
 value_template: '{{ value_json.uptime | regex_findall_index("[\:|,]\ ([0-9\.]+)", -3) | float }}'

 - platform: mqtt
 name: Camera1 Load 5min
 state_topic: "home/camera1/system"
 unit_of_measurement: ''
 value_template: '{{ value_json.uptime | regex_findall_index("[\:|,]\ ([0-9\.]+)", -2) | float }}'

 - platform: mqtt
 name: Camera1 Load 15min
 state_topic: "home/camera1/system"
 unit_of_measurement: ''
 value_template: '{{ value_json.uptime | regex_findall_index("[\:|,]\ ([0-9\.]+)", -1) | float }}'

Have a look in the source code to [https://github.com/miicam/MiiCam/blob/master/sdcard/firmware/scripts/mqtt-interval.sh]
see which commands are available [https://github.com/miicam/MiiCam/blob/master/sdcard/firmware/scripts/mqtt-control.sh]
for control.

I would not recommend to map each functionality and part of the output the camera spits out
over mqtt to sensors/switches etc but first determine what you want to do and only create configuration to do that.
Home assistant changes a lot and having to control all your configuration at every update is a bit of a pita
so keep your config as small as possible and only create what you need :)

Using Home Bridge

To add this camera to homebridge then to homekit, you need HOMEBRIDGE installed somewhere (on a raspberry PI for instance)

When homebridge is configured and running,
install the homebridge-camera-ffmpeg [https://github.com/KhaosT/homebridge-camera-ffmpeg] plugin.

To configure the plugin, use the following json config in the platform category:

{
 "platform":"Camera-ffmpeg",
 "cameras":[
 {
 "name":"Camera 1",
 "videoConfig":{
 "source":"-rtsp_transport tcp -re -i rtsp://USER:PASS@CAMERA_HOSTNAME:554/live/ch00_0",
 "stillImageSource":"-rtsp_transport tcp -re -i rtsp://USER:PASS@CAMERA_HOSTNAME:554/live/ch00_0 -vframes 1",
 "maxStreams":2,
 "maxWidth":720,
 "maxHeight":480,
 "maxFPS":15,
 "vflip":false,
 "hflip":false,
 "vcodec":"h264_omx",
 "debug": true
 }
 }
]
}

To use the snapshot, u need to manually edit the ffmpeg.js file of the plugin
to modify the timeout settings used in the ffmpeg command line arguments.

Change the timeout for snapshot creation from 1s to 5s (Or alternatively,
until this change is implemented upstream you can use this fork [https://github.com/epalzeolithe/homebridge-camera-ffmpeg])

 Setting up motion detection

Setting up motion detection

Using the RTSP service, motion detection can be enabled to send MQTT messages or create snapshots
when movement is detected in the image stream.

Motion detection mechanism

The mechanism that does image analysis and detects motion changes is build in the rtsp service.

When motion is detected, a script is triggered:

/tmp/sd/firmware/scripts/motion_on.sh

When no motion is detected anymore, another script is triggered:

/tmp/sd/firmware/scripts/motion_off.sh

The scripts by default does not much, but if you enable MQTT in the configuration options,
a MQTT message is sent to a topic defined in the config file.

Extending On-motion actions

You can add some actions yourself by editing the scripts in /tmp/sd/firmware/scripts.

By extending the /tmp/sd/firmware/scripts/motion_on.sh and /tmp/sd/firmware/scripts/motion_off.sh scripts,
any action can be performed when motion is detected.

For example if you want to make a HTTP request when motion is detected,
you can add a http request using curl or wget
. This makes it very powerful and extendable to add additional actions when motion is detected.

Make sure you requests don’t take too long to avoid lots of hanging curl requests
because the request take too long. You can use flock to prevent http requests from being executed in parallel:

flock -n /tmp/.motion.lock -c 'curl -qs https://some.service/api/motion/detected'

Snapshot

The RTSP service can take snapshots of the image stream that are saved on the sd card.
On the command line you can execute the take_snapshot utility to create a snapshot.

If you set MOTION_TAKE_SNAPSHOT and MOTION_DETECTION to 1, a snapshot is stored on the sd card when motion is detected.

Recording

You can configure the RTSP service to record a video of 20 seconds when motion is detected.
While motion is detected, the camera keeps recording with a max of 30 seconds.
After 30 seconds a new video file is created.

You can download the last created video file from the web interface, but there is not a real video browser at the moment as the video’s are not browser viewable yet.

I’ve documented the routine of converting the video using ffmpeg

Configuration Options

Configuration	Options	Description
—	—	—
MOTION_DETECTION	1 to enable, 0 to disable	Enable motion detection
MOTION_TAKE_SNAPSHOT	1 to enable, 0 to disable	Take an image snapshot when motion is detected
MOTION_RECORD	1 to enable, 0 to disable	Record 10 seconds when motion is detected
MOTION_MQTT_ON	A string, int or bool	The string to send when motion is detected
MOTION_MQTT_OFF	A string, int or bool	The string to send when no motion detected anymore

Configuration example

Enable motion detection
MOTION_DETECTION=1

Enable snapshot on motion detection
MOTION_TAKE_SNAPSHOT=0

Enable video recording on motion detection
MOTION_RECORD=0

What to publish over MQTT when motion is detected
Set ENABLE_MQTT=1 to enable
MOTION_MQTT_ON="ON"
MOTION_MQTT_OFF="OFF"

Which topic to publish to
MOTION_TOPIC="$MQTT_TOPIC/motion"

 System Logging and Log files

System Logging and Log files

Using the ENABLE_LOGGING setting in config.cfg you can enable and disable the kernel logging and syslog daemons.

Logging Configuration Settings

Configuration	Options	Description
—	—	—
ENABLE_LOGGING	1 to enable, 0 to disable.	Enable klogd and syslogd
ENABLE_REMOTE_SYSLOG	1 to enable, 0 to disable.	Send logging to a remote syslog server
REMOTE_SYSLOG_HOST	Host:Port	The remote syslog server host
PURGE_LOGFILES_AT_BOOT	1 to enable, 0 to disable.	Remove all log files in /tmp/sd/logs at boot time.

Purge log files

When debugging boot issues or startup errors, it is recommended to set PURGE_LOGFILES_AT_BOOT to 0.

This prevents the camera from deleting the log files every time the camera starts, wiping out your history.

Log rotation

If the cron daemon is enabled, a cronjob triggering logrotate is ran every evening.
To add logfiles or change the settings, edit /etc/logrotate.conf.

The logrotate utility ensures log files doe not grow too large to handle for the camera
by creating a compressed archive of the logfile and truncating the current logfile
so it can be refilled during the day.

Remote syslog

You can use remote syslogging to a syslog server by setting the ENABLE_REMOTE_SYSLOG to 1
and defining a remote syslog host in REMOTE_SYSLOG_HOST.
If your syslog server uses a non-default port, set the port as well, using: host:port.

Using /etc/syslog.conf

You can define a syslog configuration file by creating a configuration file in /etc/syslog.conf.
The busybox syslog daemon uses a similar syntax as the rsyslog daemon.

Kernel logging

By default, if syslogging is enabled, the kernel log daemon is enabled as well, logging kernel messages to syslog.

 Time settings

Time settings

This hack requires NTP to be accessible for the webcam.

If you experience issues with the rtp stream or you notice a time
in the late seventies or early eighties in your log files, make sure the camera is connected to the LAN
and is able to reach the configured NTP server.

Wait for network

The wait-for-network options in config.cfg, are there to wait for the network to become available
to ensure the time can be set at boot.

There are several options in the configuration file that can be changed:

| Configuration | Options | Description |
| — | — | — |
| WAIT_FOR_NETWORK | 1 to enable, 0 to disable. | Wait with boot until the network is up.
| PING_IP | IP or hostname string | The ip address to determine whether the network is up
| PING_RETRIES | Max ping retries before boot | The amount of retries before continu booting without network
| PING_WAIT | Wait time in seconds | The wait time in seconds in between ping probes

##
Wait for network connectivity
##

Wait with boot until network comes up
WAIT_FOR_NETWORK=1

The IP to ping to verify if network is up
PING_IP="8.8.8.8"

Ping Max retries
PING_RETRIES=10

Wait time in seconds
PING_WAIT=2

Camera without internet access

If you want to block the camera from accessing the internet,
make sure you change the PING_IP setting to your local network gateway rather than an IP address on the internet.

To ensure your camera can set the correct time, you need to either run a local NTPd service for your local lan,
or use the NTP proxy settings on your router if available.

To change the NTP server and timezone, edit the config.cfg to reflect the correct settings:

Configuration	Options	Description
—	—	—
TIMEZONE	The timezone string	The timezone to request ntp time for
NTP_SERVER	The NTP server address string	The ntp server to sync the time with

##
Time Settings
##

Set timezone
TIMEZONE="UTC"

Prefered NTP server
NTP_SERVER="pool.ntp.org"

For an overview of all available timezones,
have a look at the timezone database [http://svn.fonosfera.org/fon-ng/trunk/luci/modules/admin-fon/root/etc/timezones.db]

 Using Auto Night Mode

Using Auto Night Mode

Auto night mode is completely rewritten and new and shiny.

Auto night mode

Auto night mode is a little daemon that turns on the IR led and/or the night mode
when a certain minimum IR or light value has been reached.

By running it in the foreground with -v (verbose),
you can determine the light values that you want the camera to switch on
the IR led and the black and white view (night mode).

Command line arguments

The auto night mode switcher supports the following arguments:

Usage:
 auto_night_mode [-d|-e|-i|-l|-n|-v]

Available options:
 -d (int) delay in seconds (default: 10)
 -e (int) lowest EV value
 -i (int) lowest IR value
 -l (bool) switch IR led
 -n (bool) switch night mode
 -c (bool) switch ir cut
 -v be verbose

Example:

Only control night mode
auto_night_mode -e 200 -i 5 -n

Only switch ir led
auto_night_mode -e 200 -i 5 -l

Set a delay of 2 minutes
auto_night_mode -e 200 -i 5 -l -n -d 120

Switch IR cut when IR value is low
auto_night_mode -e 200 -i 5 -c

Tuning the Auto Night Mode Switcher

To use the auto_night_mode utility, you need to tune it so it switches at the correct light values.

To do this, start the switcher using a very low delay and with the verbose flag.
You’ll notice it prints the EV and IR values to the terminal every few seconds:

auto_night_mode -d 1 -e 200 -i 5 -l -n -v

*** Auto nightmode started
*** Nightmode values changed: ev=173 ir=49
*** Enable night mode triggered: ev=(173,200)
*** Turning on nightmode
*** Setting nightmode to 1
*** Nightmode values changed: ev=173 ir=48
*** Nightmode values changed: ev=186 ir=50
*** Nightmode values changed: ev=173 ir=48
*** Nightmode values changed: ev=175 ir=48
*** Nightmode values changed: ev=173 ir=48
*** Nightmode values changed: ev=175 ir=47

By setting the values that are printed for ev and ir, you set the value at which the switcher should be active.

Using the following settings, the switcher will behave as follows:

auto_night_mode -d 10 -e 200 -i 5 -l -n

Sequence: measure -> act -> sleep

	The sensor data is retrieved

	When the EV value is below 200 the nightmode is switched ON

	When the EV value is over 200 the nightmode is switched OFF

	When the IR value is below 5 the IR led is switched ON

	When the IR value is over 5 the IR led is switch OFF

	The loop sleeps for 10 seconds

Setting the delay

When you set the -d (delay) flag, the sequence will wait N seconds between measurements (and switching).

IR cut switching

By setting the -c flag, you can use ir cut switching as well.

When the IR Led goes on, it does not make much sense to filter the IR led as well, hence the option to switch IR cut off.

Configuration Options

Configuration	Options	Description
—	—	—
AUTO_NIGHT_MODE	1 to enable, 0 to disable.	Enable or disable the auto nightmode service (no auth)
AUTO_NIGHT_MODE_ARGS	CLI arguments	Set the cli arguments for the auto nightmode daemon

Default arguments: AUTO_NIGHT_MODE_ARGS="-d 120 -e 200 -i 5 -l -n -v"

Use the old, original nightmode switcher

You can still use the previous, original nightmode switcher by changing auto_night_mode to /usr/sbin/ir_sample in the init script.

 Using cronjobs

Using cronjobs

As the camera has a busybox installed that supports running a cron daemon,
it is possible to schedule periodic tasks on the camera.

Have a look online [https://www.howtogeek.com/101288/how-to-schedule-tasks-on-linux-an-introduction-to-crontab-files/]
for a good howto [https://opensource.com/article/17/11/how-use-cron-linux]
on setting up cronjobs [http://www.adminschoice.com/crontab-quick-reference] ;)

If you need some help with the time format, take a look at crontab.guru [https://crontab.guru/]

Configuration options

Configuration	Options	Description
—	—	—
ENABLE_CRON	1 to enable, 0 to disable.	Enable or disable the cron daemon

Configuring the cron daemon

To run periodic tasks, make sure the crond service is started at boot time by setting ENABLE_CRON to 1.

You can then start the service through the services page in the web interface or by executing its init script:

Start the cron daemon
/etc/init/S99crond start

Restart the cron daemon
/etc/init/S99crond restart

Stop the cron daemon
/etc/init/S99crond stop

Get the status of the service
/etc/init/S99crond status

Editing the crontab

The crontab file is stored as /var/run/crontab,
but this file is stored in memory and will be deleted on each restart of the camera.

It is recommended to make the crontab file permanent by copying the crontab file
from /var/run/crontab to /tmp/sd/firmware/etc/crontab so it will be restored on startup.

Using crontab -e is the best method of editing the (live) crontab,
as the file is syntax checked before the cron daemon is reloaded.
As this only changes the file in /var/run,
after changing the crontab file you should copy the file to the SD card:

cp /var/run/crontab /tmp/sd/firmware/etc/crontab

(Or you can create a cronjob to do it ;))

The crontab utility allows several arguments to manipulate the live crontab file:

List the cron jobs in crontab file
crontab -c /var/run/cron -l

Edit the crontab file
crontab -c /var/run/cron -e

Delete the crontab file (will be restored after a reboot when cron is enabled in `config.cfg`)
crontab -c /var/run/cron -r

Running cron jobs as a restricted user

It is not possible to run cronjobs for other users when using the crontab file
as the cron service only facilitates cronjobs for root.

If you want to schedule tasks as a restricted user,
create the user by adding it to the /tmp/sd/firmware/etc/passwd and /tmp/sd/firmware/etc/shadow files
and use su to run the job under another uid.

Using @ notation cronjobs

The busybox crond does not support @yearly, @hourly or any other at sign notations.

Using a little hack [https://github.com/MiiCam/MiiCam/blob/master/sdcard/firmware/etc/init/S99crond] in the init script of the crond, @restart is sort of possible, and jobs using this notation are executed every time the daemon is started through the init script:

@restart cat /tmp/sd/some/other/location/crontab >> /var/run/crontab

Example: Setting night mode at a specific time.

If you want to switch the mode from day to night at a certain time of day and back in the morning when the sun is up, a cronjob can be useful to accomplish this behaviour.

To do this, edit /tmp/sd/firmware/etc/crontab and add the following 2 cronjobs:

Disable nightmode at six in the morning
0 6 * * * /tmp/sd/firmware/bin/nightmode -d

Enable nightmode at 18:30 in the evening
30 18 * * * /tmp/sd/firmware/bin/nightmode -e

 Adding software to the build

Adding software to the build

To add a piece of software it needs to be cross-compiled using the compiler in the toolchain.

Have a look in tools/make for all third party software that is already compiled.

In the early days all tools in the MiiCam hack were statically compiled,
but as I needed more memory for the rtspd to extend the motion detection,
snapshot functionality but mostly: as I wanted to add openssl libraries to the lighttpd server,
which was already around 40 mb on disk as nearly all the modules were included in a single binary, this had to change.

All third party software is now dynamically linked.

You can add the created libraries and output binary files to the tools/make/OUTPUT.mk lists
to make sure the files are stripped and then copied to the sdcard/firmware/bin/ and sdcard/firmware/lib/ directory.

Using the LD_LIBRARY_PATH variable the shell is configured to use the libraries in /tmp/firmware/lib
as well the /lib/ directory.

To test your changes, first start cross-compiling the software in the container
without the general Makefile in the repo to keep things simple.
If things workout, you can easily copy your shell history into the make files.

After creating a makefile in tools/make, include this file in the general Makefile and make sure the software is build by adding it to the all list.

Helpers

I’ve created several helper utils that are sourced when using the container.
For being able to upload created bins to the camera, set the hostname to an existing camera:

cp tools/dev/host.cfg.example tools/dev/host.cfg
echo "camera.local" > tools/dev/host.cfg

 Convert recorded video

Convert recorded video

As the recorded video is at the moment not readable by VLC or other media players,
you need to convert the recorded *.h264 files to something else using ffmpeg to play your recorded media files.

Convert the video files

To do this, use the following command line string:

ffmpeg -vcodec h264 -i <video.h264> -vcodec copy -acodec copy <output>.m4v

 Debug Tools

Debug Tools

To reverse engineer the inner workings of the camera firmware, several debug tools are added.
As the busybox used in the firmware is offering lots of utilities, many of the required shell utilities are present in the firmware.

Available utilities

Some useful tools are:

	strace

	lsof

	tcpdump

	ffmpeg

	ffprobe

	jq

	fsck

If you miss a specific tool, create a PR or an issue to get help with implementing new software on the camera [https://miicam.github.io/development/Adding-software-to-the-build/].

Editors

For editors you have two choices for now: vi and nano. If you prefer a more graphical editor, have a look at sshfs to mount the /tmp/sd directory of the camera on your local desktop.

Toolchain and hardware specifics

For firmware specifics and the custom kernel modules used to control the internal hardware of the camera, have a look at the pdf’s in the toolchain documentation [https://github.com/miicam/MiiCamDocs/tree/master/documents].

 How to build the binaries for the webcam hack

How to build the binaries for the webcam hack

You can build the binaries yourself on a computer with docker installed.

Prerequisites

Clone this repository to your local disk:

git clone https://github.com/miicam/MiiCam.git
cd MiiCam

Building using docker

To build the binaries, I recommend using docker, as the build and the environment setup is fully automated.

Please install docker on your computer using the instructions in their documentation prior to the build and use the manage.sh script to create a build:

The fully automated method:

Build the container environment,
the binaries, the website and pack it all together:
./manage.sh --all

Or use the non-shortcut-fully-automated method if you want to type a bit more:

Build the docker container
./manage.sh --build-docker

Build the binaries
./manage.sh --build

Building without docker

Considerations

As the docker uses an Ubuntu 18.04 container, I know for sure it should work on Bionic Beaver but I expect the cross compile toolchain to work on any linux distribution as long as you install the required utilities and tools.

Have a look at the contents of the Dockerfile and manage.sh for more information on how to setup your environment and build the binaries.

Download and setup the toolchain

If you are looking for the full sdk file, containing all data sheets, manufacturer pdf’s and extended instructions on how to use the gmlib library, download the full rar sdk files [https://fliphess.com/toolchain/GM8136_SDK_release_v1.0.rar].

To build the binaries only the GM8136 SDK toolchain must be installed in /usr/src/arm-linux-3.3/toolchain_gnueabi-4.4.0_ARMv5TE, you don’t need the kernel modules, uboot, linux kernel, rootfs and other tools to cross compile the binaries.

You can download the toolchain and other files from my website [https://fliphess.com/toolchain].

Prepare your environment

To prepare your environment and move the required cross compiler toolchain in the right place, have a look at the dockerfile to see the most recent instructions to setup an build environment.

To copy the files in place:

mkdir -p /usr/src/arm-linux-3.3

URL="https://fliphess.com/toolchain/Software/Embedded_Linux/source/toolchain_gnueabi-4.4.0_ARMv5TE.tgz"
curl -qs --output /tmp/toolchain.tgz ${URL}

cd /usr/src/arm-linux-3.3
tar xzf /tmp/toolchain.tgz

Building

After moving the toolchain in place, building should be as easy as running make in the main directory of the repository:

cd chuangmi-720p-hack
make images clean

Using multiple threads to build the images

The current Makefile does not yet support building in multiple threads as there are some bugs in the requirements I haven’t found yet, but feel very welcome to create a PR to implement it.

Currently I alternatively use the PROCS variable inside the Makefile to build the individual binaries using multiple threads. If you have a much bigger computer, change the PROCS to the amount of cpu cores plus one extra (CPUs +1).

Adding new binaries to the firmware

If you want to add new binaries, rebuild the docker environment to make sure it reflects the latest changes in your working dir and open a shell:

./manage.sh --build-docker
./manage.sh --shell

Or use the shortcut:

./manage.sh --newshell

Now you can try whatever you want inside the container. If you messed up, exit the container and retry with a clean environment.

I prefer to edit the Makefile and SOURCES.mk in the repository itself and copy it inside the container build directory to keep track and prevent my changes to be gone after accidentally exiting the container.

Have a look in tools/dev/helpers.sh for some utils for building and testing new binaries.

To update the changed files by hand, copy the files from /result/ to /env:

cd /env
renew_make
rebuild_rtsp

After that you can test the binary on your camera by scp-ing or rsync-ing the binary to the camera and execute it.

Helper utils

I’ve created some helper utils in tools/dev/helpers.sh that are useful when devving in the container.
It makes recompiling an uploading binaries to the camera a bit easier until I’ve build an update mechanism.

To use the dev helpers, open the file and change the CAMERA_HOSTNAME variable to the hostname or ip of your camera.

 Nightly Builds

Nightly Builds

For lazy people (like me), who sometimes forget to start a new build before going to sleep,
Every night a build is done and if it succeeds the content is uploaded to anaconda.

You can download the nightly builds for the firmware from anaconda [https://anaconda.org/MiiCam/miicam-nightly/files]

Quality

As the nightly builds are created from master without the test routine I use for verifying new releases,
I cannot guarantee these builds work as expected.

I use the builds for testing purposes and upload the results to a package storage.

Use them at your own risk and only if you know what you are doing!

 Test Framework

Test Framework

In the MiiCamTest [https://github.com/miicam/MiiCamTest] repo you can find 2 testsuites that are used to determine if the current version is master is ready for release.

There are 2 testsuites:

	An HTTP testsuite that needs to run off-camera

	A bats unittest suite for testing the inner workings of the camera.

HTTP Testsuite

The HTTP testsuite is a collection of tests to verify the validity of all http endpoints of the web interface.
It tests most of the scenario’s that can go wrong and is supposed to verify nothing broke while devving on the web interface.

It takes at least 20 minutes to complete, as the camera can be freaking slow, especially when the rtsp is running and streaming to multiple clients.

To run the http testsuite, folow the instructions below :)

!!! note “Using the http testuite”
The http testsuite is not made to run on the camera itself.
It needs python and a bit more memory than present on the camera.

Prerequisites

Before you start, make sure:

	You have python3, pip3 and virtualenvwrapper installed.

	You have a running camera with a functional web interface using the default admin password in config.cfg (HTTP_API_PASS="drgsrethsfdghs").

	Set the hostname or ip address of your camera in CAMERA_HOSTNAME in your environment:

export CAMERA_HOSTNAME='camera.local'

Setup

First, create a virtualenv:

cd MiiCamTest
mkvirtualenv -a "$(pwd)" -p "$(which python3)" miitest

Next, we install the requirements:

pip3 install -r requirements.txt

That’s it, you’re ready to start the http testsuite :)

Run the http testsuite

To start the http testsuite, use nosetest to run all the unittests:

nosetests -v tests/http

This will one by one run all the defined http tests:

(miitest) $ nosetests tests/http -v
test_that_api_camera_reset_state_returns_200 (test_api_camera_endpoints.TestCameraAPI) ... ok
test_that_api_camera_save_state_returns_200 (test_api_camera_endpoints.TestCameraAPI) ... ok
test_that_api_camera_state_returns_200 (test_api_camera_endpoints.TestCameraAPI) ... ok
test_that_auto_exposure_can_be_turned_on_and_off (test_api_camera_endpoints.TestCameraAPI) ... ok
...

Using docker

If you don’t have a computer with python installed, you can use the docker image (if you have docker installed)

To do this, use the manage script to build the container and run the suite:

./manage.sh --build && ./manage.sh --run-http

Using the internal testsuite

The internal testsuite is based on Bats, a bash unittesting framework [https://github.com/bats-core/bats-core/]. To update to the latest version, copy the contents of libexec/bats-core/ to the bin/ directory of this repository.

!!! note “Using the internal testuite”
The internal testsuite is meant to be used on the camera itself.
To use it, clone this repo on the sdcard of the camera or use scp or rsync to copy the files from your computer to the chuangmi camera.

To run the testsuite, you need to copy it to the camera first.

 Development

Development

Warning to start with

Many files on the Chuangmi 720P are writable. Be very careful when you modify files on it, you might brick it forever.

Although the hack should be fully reversible by removing the SD card from the camera’s slot, it’s very easy to screw things up on this camera and create a very shiny paperweight object that doesn’t do camera-ing anymore.

I’ll test every change on my own Chuangmi cams, but I cannot guarantee that it keeps running smoothly if you change files that are not on the SD card.

Always use the releases rather than the latest master or development branches if you want to be sure of a more or less tested setup ;)

Development on the camera

To get to know the hardware have a look at the documentation in the toolchain [https://fliphess.com/toolchain/].

This is where you can find hardware specs and some minor documentation about the inner workings of some components and moving software parts like gmlib.

Feel free to ask questions, I’m not an expert, but I’ve read most of the pdf’s multiple times and went through many loops to get to know how the mostly in chinese documented software libraries work.

 Helper utils

Helper utils

I’ve created some helper utils in tools/dev/helpers.sh that are useful when devving in the container.
It makes recompiling an uploading binaries to the camera a bit easier until I’ve build an update mechanism.

To use the dev helpers, open the file and change the CAMERA_HOSTNAME variable to the hostname or ip of your camera.

_images/apidocs.png
Home Snapshot Seftings System Services Logviewer Config Editor APIDocs

Chuangmi 720P API Docs

Here you can find an overview of the available API endpoints. To make things easy for embedded devices, only GET requests are used where possible.

328 Services NVRam

Snapshot Camer LEDS System Coni

Manage services

Endpoints:

faps,

Returns a json with all states of services.

faps,

Check if a service is running.

Start a service using its init script.

faps,

Restart a service using its init script.

faps,

Get the status of a service using its init script

_images/logviewer.png
<« C {d ® NotSecure | camera3/logviewer.html * 9 0 Paused @ }

Snapshot Seftings ~ System Services Logviewer Config Editor APIDocs

Logviewer

View logs for services, boot process and syslog

Select Syslog ~ Select Bootlog ~ Select Webapp Logs ~ Select Wel

Now tailing the general syslog file, select alog to view.

rverLlog Select RTSP Server Log

gan 5 1 : evbug: Event. Dev: inputd, Type: 0, Code: 0, Value: 0
gan 5 1 : RTLBTIX: send eapol packet

gan 5 1 : RTLETLX, oup key camid:6, addrief:d4:f6:b6i6biad, kidi2, type:AES
gan 5 1 : RTLETLX, ol packet

gan 5 1 : RTLETLX, oup key camid:6, addrief:d4:f6:b6i6biad, kidi2, type:AES
gan 5 1 : RTLETLX, 1 packet

gan 5 1 : RTLBTIX: set group key camid:6, addr:eB:94:£6:b6:6b:ad, kid:2, type:AES
gan 5 1 © RILATIX: rec

gan 5 1 © RILATIX: rec

gan 5 1 © RTLETIX: recv

gan 5 1 ting pid 597, tty '/dev/ttyS0': '~/bin/sh < /dev/ttySQ 256l > /dev,
Jan 5 17:06:41 kernel: val ModeSet P Mode as Oxl

Jan 5 17:06:41 kernel:

Jan 5 17:06:41 kernel:

Jan 5 17:06:41 kernel:

Jan 5 17:06:41 kernel:

Jan 5 17:06:41 kernel:

Jan 5 17:06:41 kernel:

Jan 5 17:06:41 kernel:

Jan 5 17:06:41 kernel: C

Jan 5 17:06:41 kernel:

Jan 5 17:06:41 kernel:

Jan kernel:

Jan kernel: rtspd dled page fault (11) at 0x2£d89b49, code 0x815

Jan kernel: terval ModeSet PAM Mode as 0x10

Jan kernel: Set Interval ModeSet PAM Mode as Ox1

Jan kernel: terval ModeSet PAM Mode as Ox1

Jan kernel: Set Interval ModeSet PAM Mode as 0x10

Jan kernel: #4444 Apply #1 biitt

Jan dropbear(504]: Runni:

Jan Wifi: 172.16.15.84

Jan wifi

Jan wifi: addin 15.1

_images/services.png
Home Snapshot Seftings System Services Logviewer Config Editor APIDocs

Services

An overview of running services. Click on the table line to open the control modal to manage the services

Name Running Managed
auto_night_mode false true
crond false true
dropbear true true
ftpd false true
Klogd true false
lighttod true false
messagebus true false
maqtt-control true true

Current Page: 1

_images/configuration.png
Home Snapshot Sef

Config Editor

View and Edit the main config.cfg

gs System Services Logviewer Config Editor APIDocs

ckup Current Config ~ Remove Backup Configs Restore Config Backup =
BB

it it
Chuangmi 720p Firmware Configuration it
it it

BB

See: https://github.com/fliphess/chuangmi-720p-hack/wiki/Configuration-file-options

Disable the execution of the hack scripts (0/1)
DISABLE_HACK=0

Fully Disconnect from Xioami servers, including disabling streaming and OTA updater (0/1)
DISABLE_CLOUD=1

Manage the camera via cloud but prevent online updates (0/1)
This option is overruled by DISABLE_CLOUD=1
DISABLE_OTA=1

BB

Test Saved Co Refresh Editor Window ~ Save Changes

_images/frontpage.png
Snapshot Seftings System Services

Chuangmi 720P HTTP Server

This Chuangmi is powered by a custom firmware,

See the github page for more informations.

RTSP stream channels

High definition video stream: link

er Config Editor

API Docs

_images/settings.png
wer Config Editor APl Docs

Home